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Outline 1/

s Need for loss models for non-sinusoidal
waveforms beyond the Steinmetz equation (SE).

= Models: MSE, GSE, NSE, EGSE, iGSE, i°GSE,
WCSE, CWH and FHM (and in the addendum: the DNSE)

= How can they be used?

= Where to go from here?

References are listed on the last slide

power.thayer.dartmouth.edu 2



Existing models: Physically motivated

= Classical eddy current loss, P
Small part of loss in ferrites.
= Detailed hysteresis models (e.g., Preisach, Jiles-Atherton).

= Standard methods are only static; do not predict important
frequency/rate dependence
P=P,+P,+P “excess loss”).

= Addition of linear dynamics doesn’t capture nonlinearity in
excess loss.

exc (

= Models based on eddy loss induced by domain wall motion:
« P,.aBf)f ; y=150r2

= Does not match empirical data for ferrites
( o # B in Steinmetz equation).
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20t C model for core loss 1/
= Steinmetz equation (SE): D — kf Oféﬂ

= Sinusoidal only (but most power
electronics waveforms are not sinusoidal!)

= Loss is a nonlinear phenomenon:
Fourier series does not apply.

= Other notes:

=« One set of parameters only works for a limited
frequency range.

« Ignores the important effect of dc bias.

= Physically-based models: Not available for ferrites.

= Possible recent exception: (Van den Bossche, Valchev, and Van de Sype, 2006)
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The first SE variation:
Modified Steinmetz Equation (MSE) S«

(Albach ,Durbau and Brockmeyer, 1996;
Reinert, Brockmeyer, and De Doncker, 1999).

Modifies Steinmetz equation based on physical motivation
that domain wall motion loss depends on dB/dt.

Calculates an equivalent frequency from a weighted average

of dB/dt:
feg = A52 j( )dt

Use equivalent frequency and repetition rate f in Steinmetz
Equation: 12
\ P=kiZ B f,

Limitation: arbitrary assumption about type of averaging for
equivalent frequency limits accuracy.
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Next: Generalized Steinmetz
Equation (GSE) (i, Abdaliah, and Sullivan, 2001) =

= Failed attempt—useful to see why.

= Hypothesis: p(t) = fcn(B(t), dB/dt)
(instantaneous power loss depends only on
instantaneous B, dB/dt)

= Combining the instantaneous dissipation
hypothesis with the Steinmetz equation yields:

a b
P(t) = k2| IB(t)l
s [ests show that it Is not accurate—sometimes
worse than MSE.
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Lesson from GSE failure

= Losses depend on whole cycle, not just
B(t), dB/dt.

= Our path forward: Try another
hypothesis.

= GSE was P(t): kiB(t)X%Ltsy

= Improved GSE (iGSE) hypothesis:

P(t) =k, (AB)"|&
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IGSE (improved Generalized SE)

(Venkatachalam, C. R. Sullivan, T. Abdallah, H. Tacca, 2002) I‘,I

Z

= Basedon P (t) = k,(AB)" H—? , plus
compatibility with Steinmetz equation for sine
waves.

s Result: P(t) — ki(AB)ﬂ_a‘dd—?a

= [wo years later, independently discovered
and named the Natural Steinmetz Extension
(NSE) by Van den Bossche, Valchev and Georgiev, 2004
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IGSE: formulas to use.
(Venkatachalam, C. R. Sullivan, T. Abdallah, H. Tacca, 2002) " /4

= General expression: P (t) = k. (A B )ﬂ_a ‘%—? .

= Can obtain all parameters from sinusoidal data
(i.e., from SE parameters)
k

kf (L) k. =

Ki = | Bl _a-1

1.7061 j
a+1.354

= Simple formula for piecewise-linear waveforms:

) T

tm+1 _ tm)

P, ki(AB)P~ Z‘ mi1 —

m~|—1_t
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Performance of iGSE

Matched measurements
much better than either
previous method.

Subsequent comparisons
have consistently shown
that it outperforms
alternatives.

Main limitations:

= What if fundamental and
harmonics are in different
frequency ranges where
Steinmetz parameters are
different?

= DC bias not accounted for.

= Relaxation effects

= For more on these, see
(J. Muhlethaler, J. Biela, J.W.
Kolar, A. Ecklebe, 2012a, 2012b)
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flux density, B (T)

Minor loops 1/

-0.05-

= Not present in simple waveforms.

= Addressed in 1st MSE paper (Albach, Durbau &
Brockmeyer, 1996) and in iIGSE paper (2002)2

= Algorithm for automatic separation of nested loops in
IGSE paper (2002).

o

time (us) 2Q[|m$s()30 time (us)
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Other SE methods I/

T /2
= WCcSE: Waveform coefficient SE _[0 B (t)|dt
(Shen, Wang, Boroyevich, Tipton, 2008) T /2 é _ q
= Multiply SE result by a factor: jo sin( et)at

= Intended to be easier than iGSE; authors’ results show
similar accuracy to iGSE.

=« Others’ results show it’s significantly less accurate for some
situations (Villar, Viscarret, Etxeberria-Otadui and Rufer, 2009)

= EGSE: Expanded GSE (Chen, 2009)

= For LF sine waves in steel; captures

frequency dependence better. e

B

dB

JOENEI G
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FHM
(Field-extrema Hysteresis Model)

(Cale, Sudhoff, and Chan, 2008)

= By definition, this assumes that the shape of
the waveform doesn’t matter and only looks
at peaks.

= Does not capture effect of waveform.

= Starts by assuming that a frequency-
dependent Jiles-Atherton model is correct—
aims to duplicate its behavior.

= Does capture DC bias effect as in JA model.
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Other purpose
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Composite Waveform Hypothesis

= |dea that total energy lost in a cycle can be calculated by
summing the loss that occurs during each segment of
the waveform.

Volt
olage pu 2 full cycle loss
Y2 full cycle lpss

\\
\

= Implicitly assumed in iGSE.

= EXxplicitly stated and tested in (Sullivan, Harris and Herbert, 2010)

= Results mixed—see next talk.
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Measuring with sine waves vs.
measuring square-wave voltage?

@i ne meas. . [compos.

= Predicting square with square data: Comp. Wav. Hyp. and iGSE
give exactly the same results.

= Making predictions with the same class of waveforms is more
accurate. Because:

= Steinmetz parameters are different for different frequencies.

= Square wave includes harmonics—can span two ranges.

19
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Square-

Core Loss vs. Frequency with Two-plane Steinmetz Fit,
Run Set fx003: Ferroxcube 3C81 Material
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= Can fit with “two-plane Steinmetz” equation (Sullivan & Harris, 2011)

power.thayer.dartmouth.edu

p, = max(K, f “B% K, fB")

20



nclusion
Conclusions 1/
I|GSE

= Works surprisingly well; better than most alternatives.

= Allows the use of square or sine data for square or sign
predictions.

= Is equivalent to the composite waveform hypothesis for
square predictions with square waveforms.

= Is simple to use for PWL waveforms without minor loops,

and minor loop separation can be used for waveforms with
minor loops.

But
= Does not account for dc bias effect or “relaxation effects.”

= Square-wave data is a better basis for predicting loss
with square voltage applications.

= Can fit with two-plane Steinmetz equation.
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Moving forward 1/

= Square-wave data from manufacturers.

= Including dc and temperature effects
= Automated data collection!
= Standardized database format.

= Research topics:

=« Reduce data collection needed for dc, temperature, and
relaxation effects based on underlying mechanisms.

= Nonlinear dynamic model that matches behavior and
captures loss accurately.

= Constrain model development to match known loss behavior,
as in development of iGSE.
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Addendum

= One more method omitted from the original

presentation: the DNSE. (A.P.Van den
Bossche, D.M. Van de Sype, V.C. Valchev, 2005)

= Uses iIGSE (aka NSE) with the sum of two
Steinmetz equations, one for pure hysteresis
and one for anomalous losses.

= This is one solution to the problem of needing
different frequency ranges in a Steinmetz fit.
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